

# A Summary: Solar Collector Systems

Guangdong Zhu, PhD
Thermal Energy Systems Group
National Renewable Energy Laboratory (NREL)
Guangdong.Zhu@nrel.gov



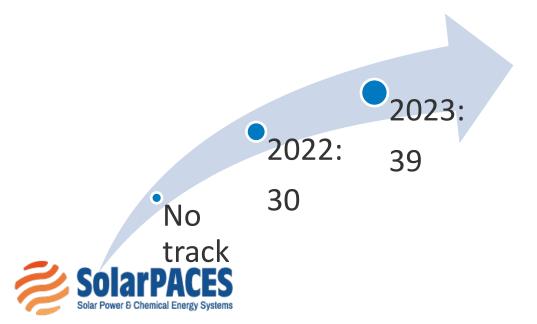
# Proud Sponsor from Solar Collector: Heliostat Consortium (HelioCon)







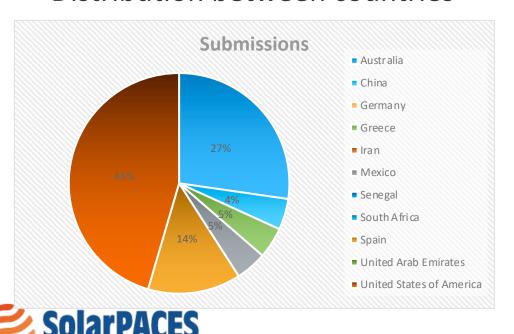








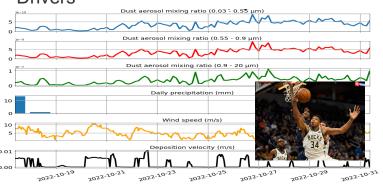

## **Topic: Solar Collector Systems**


Trend in the past SolarPACES conferences



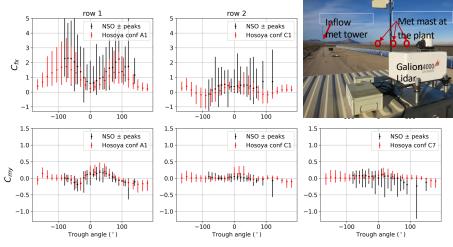


## **Topic: Solar Collector Systems**


Distribution between countries






#### Parabolic Trough Collectors: Characterization

Presenter: Dr. Spiros Alexopoulos, the FH
Aachen University of Applied Sciences
Title: Sensitivity of Dust Deposition for Parabolic
Trough Collector Mirrors to different Meteorological
Drivers



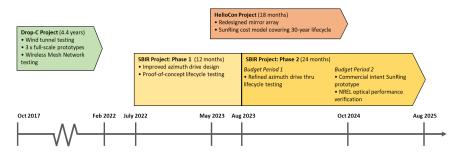


**Presenter:** Dr. Shashank Yellapantula, NREL **Title:** Wind Loading on Parabolic Trough Solar Collectors: Insights from Measurements at an Operational Powerplant



## Parabolic Trough Collectors: Improvements

#### Improvements


**Presenter:** Dr. Dongqiang Lei, Chinese Academy of Sciences **Title:** Simultaneously improving concentration ratio and reducing heat loss of large aperture parabolic trough collector using secondary concentrator





#### Heliostat Field: Designs

**Presenter:** Kyle Kattke, SolarDynamics **Title:** SunRingTM Heliostat: Minimizing
Slope Error with Smart Design and
Assembly



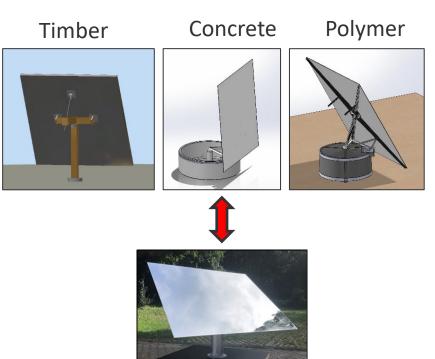





**Presenter:** Nick Didato, Univ. of Arizona **Title:** Design and Performance of a Heliostat with a Twisting Mechanism to Maintain Focus Through the Day



#### Heliostats: Designs

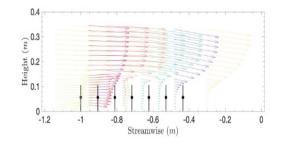

Presenter: Andreas Pfahl, DLR

**Title:** Low-Cost Materials for Heliostats Cost Comparison of Extensive or Moderate Use of Timber, Concrete, and Polymers

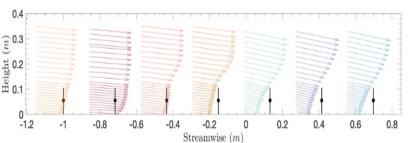


for 1 Mio m<sup>2</sup> Heliostats Produced






#### Heliostat & Heliostat Field: Wind Loads


#### Presenters: Univ. Adelaide, Prof. Maziar Arjomandi; Dr. Matthew Emes

#### **Presentations:**

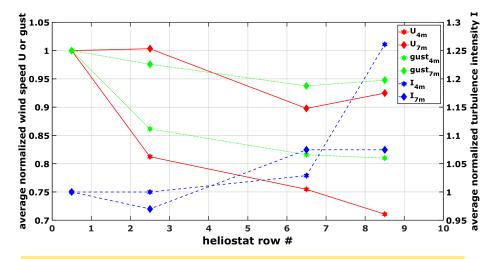
- Heliostat Wind Load Decade of Research at the University of Adelaide
  - Shared 13 Learns learned
- 2. Impact of Atmospheric Turbulence on Dynamic Wind Loads on Heliostats
- Field Measurement and Analysis of Wind Loads on a Single Heliostat at the Atmospheric Boundary Layer Research Facility (ABLRF)












#### Heliostat Field: Wind Loads

Presenter: Marc Röger, DLR

**Title:** Long-term Analysis of twodimensional Aerodynamic Conditions within a Real-Scale Heliostat field





Significant effect of heliostat tracking angles on wind pattern within the field visible

#### Heliostat: Soiling Characterization

**Presenter:** Giovanni Picotti, Queensland Univ. of Tech.

**Title:** Stochastic Assessment of Predictions and Uncertainties for Reflectance Losses Based on Experimental Data for Three Australian Sites

Losses between 0.3%-3% per day reported

#### Reflectance losses:

- Mount Isa (0.31 pp/day)
- Brisbane (0.77 pp/day).



 PLEASE JOIN THEM FOR THE SOILING DATABASE!









#### Heliostat: Optical Characterization

**Title:** Non-Intrusive Optics (NIO): Technology for Characterizing Commercial Heliostat Optical Errors

#### NIO Software Point-wise deviations of the mirror surface normal vector

- 1: Field model
- Define heliostats and tower in space
- Assess measurability



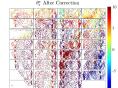
- Generate waypoints for a sector of heliostats
- Collect video data

4: Optical errors



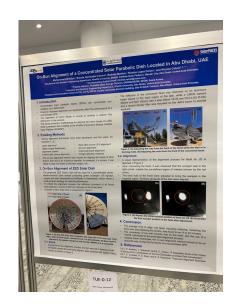
- 3: Data parsing
- Define expected
   orientations
- Find heliostats
- Find features heliostat corners and tower edges
- Compute a camera position




nera



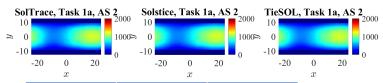





- Apply tracking correction to refine
- 2D solve for vector that satisfies reflection conditions for two orientations at single point






# **Authors:** Masdar Institute Solar Platform, Khalifa University



#### Heliostat: Modeling

Presenter: Rebecca Mitchell, NREL

Title: Modeling Receiver Flux of Commercial Power Tower Concentrating Solar Power Plants Using Ray Tracing: A Round-Robin Comparison of SolTrace, Solstice, and TieSOL



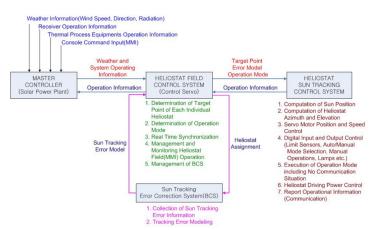
| Tool     | # of rays | Run time    |
|----------|-----------|-------------|
| SolTrace | 200M      | ~15 minutes |
| Solstice | 20M       | ~10 minutes |
| TieSOL   | 360M      | 4-7 seconds |

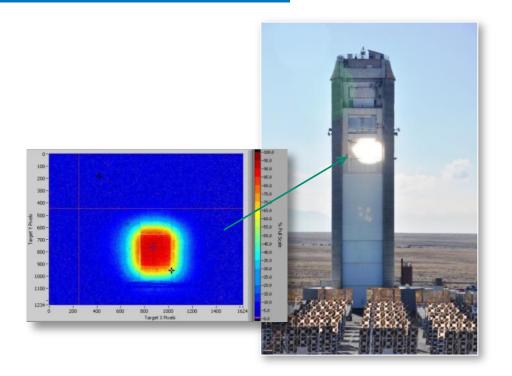
**Presenter:** Michel Izygon, Tietronix Software

Title: Stop Spending Your Time Developing or Using Analytical Methods for Heliostats Flux **Density Computation!** 

- Analytical
  - SolarPilot
  - DELSOL
  - Helios
  - HFLCAL

- Ray Tracing software
  - SolTrace
  - Solstice
  - Tracer
  - Tonatiuh
  - SBPray
  - STRAL
  - SPray
  - TieSOL: GPU based ray tracing





TieSol: Achieved 1Billion rays/second (on RTX 2080 Ti)

13

#### Heliostat Field: Control

**Presenter:** Kenneth M. Armijo, Sandia Title: NSTTF HelioCon Wireless Closed-Loop Controls Test Bed Development







## Heliostat & Heliostat Field: HelioCon Update

Presenter: Guangdong Zhu, NREL

**Title:** An International Heliostat Consortium (HelioCon): Progress

Highlight in 2023



















Presenter: Rebecca Mitchell, NREL

**Title:** Heliostat Consortium: Update on Resource, Training, and Education

Development and Women+ in Concentrating

Solar

#### We need to grow our workforce

Education Institute Involvement



Diversity, Equity, and Inclusion



**Training Resources** 



Online Database





- Heliostat RD dominates the track
- HelioCon is a little bit overselling
  - But hope to encourage more attention to heliostat technologies and solar collectors in general





#### Start with anxiety

What makes heliostat development so fascinating?

Maybe because it's almost impossible to fulfill the following requirements at once:

- High precession
- High wind loads
- Long live time
- Low maintenance
- Suitable for all solar sites

Let's see!



#### Missing Presentations

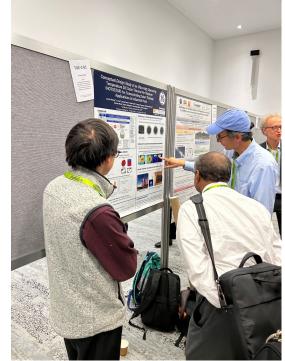













- Site characterization are important
  - Soiling
  - Windload
- Will impact heliostat cost, performance, OM optimization, and commercial risks



• Great participations in the topic







Observed commitment, enthusiasm and passions

Ending at: 6:15pm



• 6:15pm



• 6:45pm





- Steep learning curves on solar collectors research:
  - It is very easy to go wrong when one starts
  - Need a little bit of everything,
    - Optics
    - Metrology
    - Mechanical engineering
    - Chemical engineering
    - Civil engineering
    - System analysis
  - and no one knows everything.



#### There is still hope!







Posted by Ivan Acosta Pazmino

# Thank you!

www.nrel.gov

